
FastaIO.jl Documentation
Release 0.2-dev

Carlo Baldassi

June 17, 2013

CONTENTS

1 Installation 3

2 Usage 5
2.1 Introductory notes . 5
2.2 The FASTA format . 5
2.3 The sequence storage type . 5
2.4 Reading files . 6
2.5 Writing files . 7

Python Module Index 9

Python Module Index 11

i

ii

FastaIO.jl Documentation, Release 0.2-dev

This module provides ways to parse and write files in FASTA format in Julia. It is designed to be lightweight and
fast; the parsing method is inspired to kseq.h. It can read and write files on the fly, keeping only one entry at a time in
memory, and it can read and write gzip-compressed files.

Here is a quick example for reading a file:

julia> using FastaIO

julia> FastaReader("somefile.fasta") do fr
for (desc, seq) in fr

println("$desc : $seq")
end

end

And for writing:

julia> using FastaIO

julia> FastaWriter("somefile.fasta") do fw
for s in [">GENE1", "GCATT", ">GENE2", "ATTAGC"]

write(fw, s)
end

end

CONTENTS 1

http://en.wikipedia.org/wiki/FASTA_format
http://lh3lh3.users.sourceforge.net/kseq.shtml

FastaIO.jl Documentation, Release 0.2-dev

2 CONTENTS

CHAPTER

ONE

INSTALLATION

You can install FastaIO from Julia’s package manager:

julia> Pkg.add("FastaIO")

3

FastaIO.jl Documentation, Release 0.2-dev

4 Chapter 1. Installation

CHAPTER

TWO

USAGE

2.1 Introductory notes

For both reading and writing, there are quick methods to read/write all the data at once: readfasta() and
writefasta(). These, however, require all the data to be stored in memory at once, which may be impossible
or undesirable for very large files. Therefore, for both reading and writing, the preferred way is actually to use special-
ized types, FastaReader and FastaWriter, which have the ability to process one entry (description + sequence
data) at a time (the writer can actually process one char at a time); however, note that these two object types are not
symmetric: the reader acts as an iterable object, while the writer behaves similarly to an IO stream.

2.2 The FASTA format

The FASTA format which is assumed by this module is as follows:

1. description lines must start with a > character, and cannot be empty

2. only one description line per entry is allowed

3. all characters must be ASCII

4. whitespace is not allowed within sequence data (except for newlines) and at the beginning or end of the descrip-
tion

When writing, description lines longer than 80 characters will trigger a warning message; sequence data is formatted
in lines of 80 characters each; extra whitespace is silently discarded. No other restriction is put on the content of the
sequence data, except that the > character is forbidden.

When reading, almost no explicit checks are performed to test that the data actually conforms to these specifications.

2.3 The sequence storage type

When reading FASTA files, the container type used to store the sequence data can be chosen (as an optional argument
to readfasta() or as a parametric type of FastaReader). The default is ASCIIString, which is the most
memory-efficient and the fastest; another performance-optimal option is Vector{Uint8}, which is a less friendly
representation, but has the advantage of being mutable. Any other container T for which convert(::Type{T},
::Vector{Uint8}) is defined can be used (e.g. Vector{Char}, or a more specialized Vector{AminoAcid}
if you use the BioSeq package), but the conversion will generally slightly reduce the performance.

5

https://github.com/diegozea/BioSeq.jl

FastaIO.jl Documentation, Release 0.2-dev

2.4 Reading files

readfasta(filename::String[, sequence_type::Type = ASCIIString])
readfasta(io::IO[, sequence_type::Type = ASCIIString])

This function parses a whole FASTA file at once and stores it into memory. The result is a Vector{Any}
whose elements are tuples consisting of (description, sequence), where description is an
ASCIIString and sequence contains the sequence data, stored in a container type defined by the se-
quence_type optional argument (see this section for more information).

FastaReader{T}(filename::String)
FastaReader{T}(io::IO)

This creates an object which is able to parse FASTA files, one entry at a time. filename can be a plain text
file or a gzip-compressed file (it will be autodetected from the content). The type T determines the output type
of the sequences (see this section for more information) and it defaults to ASCIIString.

The data can be read out by iterating the FastaReader object:

for (name, seq) in FastaReader("somefile.fasta")
do something with name and seq

end

As shown, the iterator returns a tuple containing the description (always an ASCIIString)
and the data (whose type is set when creating the FastaReader object (e.g.
FastaReader{Vector{Uint8}}(filename)).

The FastaReader type has a field num_parsed which contains the number of entries parsed so far.

Other ways to read out the data are via the readentry() and readall() functions.

FastaReader{T}(f::Function, filename::String)
This format of the constructor is useful for do-notation, i.e.:

FastaReader(filename) do fr
read out the data from fr

end

which ensures that the close() function is called; however, this is not crucial, since the function will be called
anyway by the finalizer when the FastaReader object goes out of scope and is garbage-collected.

readentry(fr::FastaReader)
This function can be used to read entries one at a time:

fr = FastaReader("somefile.fasta")
name, seq = readentry(fr)

See also the eof() function.

readall(fr::FastaReader)
This function extends Base.readall(): it parses a whole FASTA file at once, and returns an array of tuples,
each one containing the description and the sequence (see also the readfasta() function).

rewind(fr::FastaReader)
This function rewinds the reader, so that it can restart the parsing again without closing and re-opening it. It also
resets the value of the num_parsed field.

eof(fr::FastaReader)
This function extends Base.eof() and tests for end-of-file condition; it is useful when using readentry():

fr = FastaReader("somefile.fasta")
while !eof(fr)

6 Chapter 2. Usage

FastaIO.jl Documentation, Release 0.2-dev

name, seq = readentry(fr)
do something

end
close(fr)

close(fr::FastaReader)
This function extends Base.close() and closes the stream associated with the FastaReader; the reader
must not be used any more after this function is called.

2.5 Writing files

writefasta(filename::String, data[, mode::String = “w”])
writefasta([io::IO = OUTPUT_STREAM], data)

This function dumps data to a FASTA file, auto-formatting it so to follow the specifications detailed in this
section. The data can be anything which is iterable and which produces (description, sequence)
tuples upon iteration, where the description must be convertible to an ASCIIString and the sequence
can be any iterable object which yields elements convertible to ASCII characters (e.g. an ASCIIString, a
Vector{Uint8} etc.).

Examples:

writefasta("somefile.fasta", [("GENE1", "GCATT"), ("GENE2", "ATTAGC")])
writefasta("somefile.fasta", ["GENE1" => "GCATT", "GENE2" => "ATTAGC"])

If the filename ends with .gz, the result will be a gzip-compressed file.

The mode flag determines how the filename is open; use "a" to append the data to an existing file.

FastaWriter(filename::String[, mode::String = “w”])
FastaWriter([io::IO = OUTPUT_STREAM])
FastaWriter(f::Function, args...)

This creates an object which is able to write formatted FASTA files which conform to the specifications detailed
in this section, via the write() and writeentry() functions.

The third form allows to use do-notation:

FastaWriter("somefile.fasta") do fw
write the file

end

which is strongly recommended since it ensures that the close() function is called at the end of writing: this
is crucial, as failing to do so may result in incomplete files (this is done by the finalizer, so it will still happen
automatically if the FastaWriter object goes out of scope and is garbage-collected, but there is no guarantee
that this will happen if Julia exits).

If the filename ends with .gz, the result will be gzip-compressed.

The mode flag can be used to set the opening mode of the file; use "a" to append to an existing file.

The FastaWriter object has an entry::Int field which stores the number of the entry which is currently
being written.

writeentry(fw::FastaWriter, description::String, sequence)
This function writes one entry to the FASTA file, following the specifications detailed in this section. The
description is without the initial ’>’ character. The sequence can be any iterable object whose elements
are convertible to ASCII characters.

Example:

2.5. Writing files 7

FastaIO.jl Documentation, Release 0.2-dev

FastaWriter("somefile.fasta") do fw
for (desc,seq) in [("GENE1", "GCATT"), ("GENE2", "ATTAGC")]

writeentry(fw, desc, seq)
end

end

write(fw::FastaWriter, item)
This function extends Base.write() and streams items to a FASTA file, which will be formatted according
to the specifications detailed in this section.

When using this method, description lines are marked by the fact that they begin with a ’>’ character; anything
else is assumed to be part of the sequence data.

If item is a Vector, write will be called iteratively over it; if it is a String, a newline will be appended
to it and it will be dumped. For example the following code:

FastaWriter("somefile.fasta") do fw
for s in [">GENE1", "GCA", "TTT", ">GENE2", "ATTAGC"]

write(fw, s)
end

end

will result in the file:

>GENE1
GCATTT
>GENE2
ATTAGC

If item is not a Vector nor a String, it must be convertible to an ASCII character, and it will be piped into
the file. For example the following code:

data = """
>GENE1
GCA
TTT
>GENE2
ATT
AGC
"""

FastaWriter("somefile.fasta") do fw
for ch in data

write(fw, ch)
end

end

will result in the same file as above.

close(fw::FastaWriter)
This function extends Base.close() and it should always be explicitly used for finalizing the
FastaWriter once the writing has finished, unless the do-notation is used when creating it.

8 Chapter 2. Usage

PYTHON MODULE INDEX

f
FastaIO, 3

9

FastaIO.jl Documentation, Release 0.2-dev

10 Python Module Index

PYTHON MODULE INDEX

f
FastaIO, 3

11

	Installation
	Usage
	Introductory notes
	The FASTA format
	The sequence storage type
	Reading files
	Writing files

	Python Module Index
	Python Module Index

